МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ

ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Новосибирский государственный технический университет

Кафедра АГД

Расчетно-графическое задание

Вариант № 1

Факультет: ФЭН

Группа: ТЭ-11

Студент: Апчугова Е.А.

Преподаватель: Гостеев Ю. А.

Дата:

Оценка:

Задача С:

Определить диаметр трубопровода d, если заданы объемный расход Q, температура t и род жидкости, располагаемый напор H_{pacn} , отметки высот в начале z_1 и в конце z_2 трубопровода, длина l трубы и Δ , местные сопротивления.

Вариант задания:

Вариант	Жидкость	t, °C	H_{pacn} ,	Q,	1, м	Δ,	7. M	Z ₂ , M	Местные
			M	M^3/c		MM	Z_1, M		сопротивления
1	Керосин Т-1	10	50	0,06	20	0,1	0	5	1кр., 1р.30°

Решение:

Коэффициенты местных сопротивлений:

 $\zeta_{_{M1}}=2-$ Коффициент топливного крана

$$\zeta_{M2} = 0.95 \cdot \sin^2 \frac{\alpha}{2} + 2.05 \cdot \sin^4 \frac{\alpha}{2} = 0.95 \cdot \sin^2 \frac{30^{\circ}}{2} + 2.05 \cdot \sin^4 \frac{30^{\circ}}{2} = 0.07284 - 6.00 \cdot \sin^4 \frac{30^{\circ}}{2} = 0.00 \cdot \sin^$$

Коэффициент резкого поворота на 30°

I приближение:

$$v^{(0)} = \sqrt{\frac{2gH_{pacn}}{(\sum_{u} \zeta_{u} + 1)}}$$
, $z \partial e H_{pacn} = H_{pacn} - H_{cm} = H_{pacn} - (z_{2} - z_{1})$

Коэффициенты местных сопротивлений $\sum \zeta_{\scriptscriptstyle{M}}$ берём из справочника

$$v^{(0)} = \sqrt{\frac{2 \cdot 9, 8 \cdot [50 - (5 - 0)]}{(2 + 0, 07284) + 1}} = 16,94 \,\text{m/c}$$

$$d^{(0)} = \sqrt{\frac{4Q}{\pi v^{(0)}}} = \sqrt{\frac{4 \cdot 0,06}{\pi \cdot 16,94}} = \dot{c} \, 0,067 \, \text{m} \, \dot{c}$$

$$\mathfrak{R}^{(0)} = \frac{v^{(0)}d^{(0)}}{v}$$
, $\partial e v = 3$, $25 \cdot 10^{-6} \frac{M^2}{c} npu t = 10 \circ C$

$$Re^{[0]} = \frac{16,94 \cdot 0,067}{3,25 \cdot 10^{-6}} = 349224,6 > Re_{\kappa p} = >$$
режим течения турбулентный

$$\lambda_m^{(0)} = 0$$
, $11 \left(\frac{\Box}{d^{[0]}} + \frac{68}{\Re^{[0]}} \right)^{\frac{1}{4}} = 0$, $11 \left(\frac{0$, $1 \cdot 10^{-3}}{0$, $067} + \frac{68}{349224,6} \right)^{\frac{1}{4}} = 0$, 0222

$$H^{(0)} = \left(\sum_{M} \zeta_{M} + \lambda_{m}^{(0)} \frac{1}{d^{(0)}}\right) \frac{\upsilon^{(0)2}}{2g} = \left(2,07284 + 0,0222 \cdot \frac{20}{0,067}\right) \frac{16,94^{2}}{2 \cdot 9,8} = 127,37 \text{ M}$$

Необходимую точность примем равной ε =0,01

$$\frac{\left|H^{(0)}-H_{pacn}\right|}{H_{pacn}} = \frac{\left|127,37-50\right|}{50} = 1,5474>0,01=$$
і продолжаем вычисления

Сравниваем $H^{(0)}uH_{pacn}$ 127 , 37>50, значит в следующем приближении необходимо уменьшить скорость

<u>II приближение:</u>

$$v^{(i)} = v^{(i-1)} \sqrt{\frac{H_{pacn}}{H^{(i-1)}}}$$

$$v^{(1)} = 16,94 \sqrt{\frac{50}{127,37}} = 10,61 \text{ м/c}$$

$$d^{(1)} = \sqrt{\frac{4 \cdot 0,06}{\pi \cdot 10,61}} = \vdots 0,085 \text{ м } \xi$$

$$Re^{(1)} = \frac{10,61 \cdot 0,085}{3,25 \cdot 10^{-6}} = 277492,3 > Re_{\kappa p} = \text{> режим течения турбулентный}$$

$$\lambda_m^{(1)} = 0,11 \left(\frac{0,1 \cdot 10^{-3}}{0,085} + \frac{68}{277492,3}\right)^{\frac{1}{4}} = 0,0214$$

$$H^{(1)} = \left(2,07284 + 0,0214 \cdot \frac{20}{0,085}\right) \frac{10,61^2}{2 \cdot 9,8} = 40,82 \text{ м}$$

$$\frac{\left|H^{(1)} - H_{pacn}\right|}{H_{pacn}} = \frac{\left|40,82 - 50\right|}{50} = 0,18 > 0,01 = \text{> продолжаем вычисления}$$

Сравниваем $H^{(1)}uH_{pacn}$, 40 , 82<50= $\dot{\iota}$ в следующем приближении необходимо увеличить скорость

III приближение:

$$v^{(2)} = 10, 61 \sqrt{\frac{50}{40,82}} = 11,74 \text{ м/c}$$

$$d^{(2)} = \sqrt{\frac{4 \cdot 0,06}{\pi \cdot 11,74}} = \dot{\iota} 0,08 \text{ м/c}$$

$$Re^{(2)} = \frac{11,74 \cdot 0,08}{3,25 \cdot 10^{-6}} = 288984,6 > Re_{\text{кр}} = \text{> режим течения турбулентный}$$

$$\lambda_m^{(2)} = 0,11 \left(\frac{0,1 \cdot 10^{-3}}{0,08} + \frac{68}{288984,6} \right)^{\frac{1}{4}} = 0,0216$$

$$H^{(2)} = \left(2,07284 + 0,0216 \cdot \frac{20}{0,08} \right) \frac{11,74^2}{2 \cdot 9,8} = 52,54 \text{ м}$$

$$\frac{|H^{(2)} - H_{pacn}|}{H_{pacn}} = \frac{|52,54 - 50|}{50} = 0,05 > 0,01$$

Сравниваем $H^{(2)}uH_{pacn}$, 52,54>50= $\ddot{\iota}$ в следующем приближении необходимо уменьшить скорость

IV приближение:

$$v^{(3)} = 11,74\sqrt{\frac{50}{52,54}} = 11,45 \,\text{м/c}$$

$$d^{(3)} = \sqrt{\frac{4 \cdot 0,06}{\pi \cdot 11,45}} = 0,082 \,\text{м/c}$$

$$Re^{(3)} = \frac{11,45 \cdot 0,082}{3,25 \cdot 10^{-6}} = 288892,3 > Re_{\text{кр}} = \text{> режим течения турбулентный}$$

$$\lambda_m^{(3)} = 0,11\left(\frac{0,1 \cdot 10^{-3}}{0,082} + \frac{68}{288892,3}\right)^{\frac{1}{4}} = 0,0215$$

$$H^{(3)} = \left(2,07284 + 0,0215 \cdot \frac{20}{0,082}\right) \frac{11,45^2}{2 \cdot 9,8} = 49 \,\text{м}$$

$$\frac{\left|H^{(3)} - H_{pacn}\right|}{H_{pacn}} = \frac{|49 - 50|}{50} = 0,02 < 0,01$$

Сравниваем $H^{(1)}uH_{pacn}$, 49<50=&6 в следующем приближении необходимо увеличить скорость

V приближение:

$$v^{(4)} = 11,45\sqrt{\frac{50}{49}} = 11,57 \text{ м/c}$$

$$d^{(4)} = \sqrt{\frac{4 \cdot 0,06}{\pi \cdot 11,57}} = 20,081 \text{ м } \text{ i}$$

$$Re^{(4)} = \frac{11,57 \cdot 0,081}{3,25 \cdot 10^{-6}} = 288360 > \text{Re}_{\text{кр}} = \text{>режим течения турбулентный}$$

$$\lambda_m^{(4)} = 0,11\left(\frac{0,1 \cdot 10^{-3}}{0,081} + \frac{68}{288360}\right)^{\frac{1}{4}} = 0,02154$$

$$H^{(4)} = \left(2,07284 + 0,02154 \cdot \frac{20}{0,081}\right) \frac{11,57^2}{2 \cdot 9,8} = 50,48 \text{ M}$$

$$\frac{\left|H^{(4)} - H_{pacn}\right|}{H_{pacn}} = \frac{\left|52,54 - 50\right|}{50} = 0,0096 > 0,01$$

 $H^{[3]}$ совпадает с H_{pacn} с точностью до ε =0,01. Диаметр трубопровода принимаем равным d= 80 мм по ГОСТ 3262-75.